Piezoelectric Ceramics of the (1 − x)Bi0.50Na0.50TiO3–xBa0.90Ca0.10TiO3 Lead-Free Solid Solution: Chemical Shift of the Morphotropic Phase Boundary, a Case Study for x = 0.06
نویسندگان
چکیده
Research and development of lead-free piezoelectric materials are still the hottest topics in the field of piezoelectricity. One of the most promising lead-free family of compounds to replace lead zirconate-titanate for actuators is that of Bi0.50Na0.50TiO₃ (BNT) based solid solutions. The pseudo-binary (1 - x)Bi0.50Na0.50TiO₃-xBa1 - yCayTiO₃ system has been proposed for high temperature capacitors and not yet fully explored as piezoelectric material. In this work, the solid solution with x = 0.06 and y = 0.10 was obtained by two different synthesis routes: solid state and Pechini, aiming at using reduced temperatures, both in synthesis (<800 °C) and sintering (<1150 °C), while maintaining appropriated piezoelectric performance. Crystal structure, ceramic grain size, and morphology depend on the synthesis route and were analyzed by X-ray diffraction, together with scanning and transmission electron microscopy. The effects of processing and ceramic microstructure on the structural, dielectric, ferroelectric, and piezoelectric properties were discussed in terms of a shift of the Morphotropic Phase Boundary, chemically induced by the synthesis route.
منابع مشابه
Recent Progress on BaTiO3-Based Piezoelectric Ceramics for Actuator Applications
Due to issues with Pb toxicity, there is an urgent need for high performance Pb-free alternatives to Pb-based piezoelectric ceramics. Although pure BaTiO3 material exhibits fairly low piezoelectric coefficients, further designing of such a material system greatly enhances the piezoelectric response by means of domain engineering, defects engineering, as well as phase boundary engineering. Espec...
متن کاملHigh Performance Lead-free Piezoelectric Material
Lead has recently been expelled from many commercial applications and materials (for example, from solder, glass and pottery glaze) owing to concerns regarding its toxicity. Lead zirconium titanate (PZT) ceramics are highperformance piezoelectric materials, which are widely used in sensors, actuators and other electronic devices; they contain more than 60 weight per cent lead. Although there ha...
متن کاملProbing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics
Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1-x)PbMg1/3Nb2/3O₃-xPbT...
متن کاملPiezoelectric Ceramics with Compositions at the Morphotropic Phase Boundary in the BiFeO3–PbZrO3–PbTiO3 Ternary System
Since ceramics in the PbZrO3–PbTiO3 binary system display excellent piezoelectric properties and those in BiFeO3–PbTiO3 exhibit high Curie temperatures, morphotropic phase boundary (MPB) compositions in the BiFeO3–PbZrO3–PbTiO3 ternary solid solution system are investigated for the development of piezoelectric ceramics for high temperature applications. It is found that the MPB compositions in ...
متن کاملAn equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals
The recently proposed Equivalent Dipole Model for describing the electromechanical properties of ionic solids in terms of 3 ions and 2 bonds has been applied to PZT ceramics and lead-free single crystal piezoelectric materials, providing analysis in terms of an effective ionic charge and the asymmetry of the interatomic force constants. For PZT it is shown that, as a function of composition acr...
متن کامل